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Abstract. Deep learning has been applied for processing programs in
recent years and gains extensive attention on the academic and indus-
trial communities. In analogous to process natural language data based
on word embeddings, embeddings of tokens (e.g. classes, variables, meth-
ods etc.) provide an important basis for processing programs with deep
learning. Nowadays, lots of real-world programs rely on API libraries for
implementation. They contain numbers of API tokens (e.g. API related
classes, interfaces, methods etc.), which indicate notable semantics of
programs. However, learning embeddings of API tokens is not exploited
yet. In this paper, we propose a neural model to learn embeddings of API
tokens. Our model combines a recurrent neural network with a convo-
lutional neural network. And we use API documents as training corpus.
Our model is trained on documents of five popular API libraries and eval-
uated on a description selecting task. To our best knowledge, this paper
is the first to learn embeddings of API tokens and takes a meaningful
step to facilitate deep learning based program processing.

Keywords: API tokens · Embeddings · Program processing · Deep
neural networks

1 Introduction

Deep learning has achieved significant breakthroughs in a number of fields, such
as image processing [9,11], speech recognition [5] and natural language processing
[2,19]. The mainstream models of deep learning, deep neural networks (DNNs),
can extract complex features from raw data with little human engineering knowl-
edge. Recently, the advantages of deep learning have also been exploited in
program processing and gains more and more attention on the academic and
industrial communities [1,15,22].

When processing programs with DNNs, it’s usually required to represent
tokens (e.g. classes, variables, methods, etc.) in programs as real-value embed-
dings so that DNNs could accept programs as inputs. This is analogous to
processing natural language sentences and paragraphs based on word embed-
dings [4,10]. A few works have been proposed to learning embeddings of tokens in
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programs, such as learning embeddings of identifiers based on programs’ abstract
syntax trees [15] or learning embeddings of keywords in programs for software
document retrieval [21].

However, learning embeddings of API 1 tokens has not been exploited yet,
while they appear in lots of real-world programs. API tokens here refer to the
program artifacts related to API libraries, like classes, interfaces, methods etc.
Nowadays more and more programs rely on API libraries for implementation.
Numbers of API tokens are used to leverage functions provided by API libraries.
These API tokens indicate important semantics of programs and play a vital
role in processing and analyzing the corresponding programs.

Figure 1 shows an example of a code snippet SimpleHostConnectionPool.java
of the Astyanax project. It implements an internal method to wait for a con-
nection on the available connection pool. As shown in Fig. 1(a), API tokens are
related to core functions of this program, such as obtaining the start time, trying
to get a free connection, throw timeout exception and interrupting threads of
waiting for connections. We can infer that these API tokens have more important
influences than other components (Fig. 1(b)) of programs. Learning embeddings
of API tokens is meaningful in processing programs that rely on API libraries.

In this paper, we propose a neural model to learn embeddings of API tokens
to facilitate deep learning based program processing. Our model is composed of
a recurrent neural network with a convolutional neural network to learn embed-
dings of API tokens from API documents. API documents provide detailed
descriptions of functions for API tokens. Our dataset contains documents of
five popular Java API libraries to train our model. Finally, we use a description
selecting task to evaluate learnt embeddings. To the best of our knowledge, our
work is the first to learn embeddings of API tokens and takes a meaningful step
on processing programs with deep learning.

The rest of this paper is organized as follows. Section 2 introduces related
work of deep learning based program processing. Section 3 describes our model
for learning embeddings of API tokens with deep neural networks. Section 4
illustrates the dataset information and evaluation results. Section 5 presents the
conclusion.

2 Related Work

Deep learning has been applied to program processing of different application
scenarios. In this section, we first introduce the most relevant work to ours, then
discuss other related work.

Mou et al. [15–17] proposed a tree-based convolutional neural network
(TBCNN) for classifying programs with different algorithm labels. TBCNN was
constructed based on programs’ abstract syntax trees (ASTs) to capture pro-
grams’ structural features. Also, TBCNN learned embeddings for identifiers of
AST trees and program vectors. The dataset was composed of C programs which

1 https://en.wikipedia.org/wiki/Application programming interface.
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Fig. 1. Code from SimpleHostConnectionPool.java of the Astyanax project (Color
figure online)

were written by students to solve algorithm assignments. However, TBCNN is
inappropriate for processing real-world programs that contain numbers of API
tokens. API tokens will be transferred to identifiers of AST trees, which leads to
the lost of important semantics in such programs. We propose to learn embed-
dings of API tokens based on its corresponding descriptions in API documents,
which can capture the tokens’ semantics.
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Ye et al. [21] split code and text into sets of keywords, then adapted Skip-
gram model to learn embeddings of keywords. The learnt embeddings were used
to compute document similarities for software document retrieval tasks. They
took documents as bag-of-words and used word-based equations to measure
similarities between documents. API documents were used as a part of train-
ing datasets. Differently, we take API tokens and their descriptions as word
sequences, capture the sequential context rather than bag-of-words and output
embeddings for API tokens completely.

Despite the above work, deep learning was also used to predict programs’
execution results or generate programs. Zaremba et al. [22] presented a character-
level recurrent neural network to predict outputs of short python code. Allamanis
et al. [1] proposed an attentional convolutional neural network to generate short,
descriptive function name-like phrases for given code snippets. Ling et al. [13]
presented a neural network architecture to generate programs for two card games
with a mixed natural language and structured specification Gu et al. [6] modified
the sequence-to-sequence network of machine translation [19] to generate API
call sequences for given queries.

3 Learning Embeddings of API Tokens

3.1 Overview

We use API documents as training corpus to learn embeddings of API tokens.
Because API documents provide mappings of API tokens and descriptions, which
contain useful semantic information about API tokens’ function.

Table 1 shows a mapping example. As for the API token part, we involve the
package prefix (“java.awt.color”) as a part of the entire API token. Because in
real-world programs, packages should be imported before using API tokens. As
for the description part, it provides a natural language summary of the corre-
sponding API token’s function, which is useful for program processing.

Table 1. An example of API tokens-description mappings

Token Description

java.awt.color.ColorSpace This abstract class is used to serve as a color space tag
to identify the specific color space of a Color object
or, via a ColorModel object, of an Image, a
BufferedImage, or a GraphicsDevice

Here we explain several pre-processing steps for the actual inputs of our
neural model first. We process the raw data of tokens and descriptions into
word sequences. First, we remove punctuations and split the text into sequences
by whitespaces. Then we decompose the words of the CamelCase2 format
2 https://en.wikipedia.org/wiki/CamelCase.
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(e.g. names of classes, interfaces, etc.) into componential words by breaking at
the positions of the capital letter or the underline (Sect. 4.1). There are two rea-
sons for this operation. First, CamelCase rules use word combinations for token
naming. The chose componential words usually help to express semantics of the
entire token. Second, API tokens under the same package often share componen-
tial words as the common prefix, which indicates important lexical context of
API tokens. For example, “InputMethod”,“InputMethodContext” and “Input-
MethodDescriptor” under the package “java.awt.im.spi” have the common com-
ponential words “Input” and “Method”. The CamelCase decomposition helps
to capture the common prefix and makes the semantic space to be respectively
dense. After that, we do the lowercase and stemming operations on each word.
Finally, we get word sequences of the token and description. They are notated
as tSeq and dSeq respectively.

Fig. 2. Overview of the model architecture

The overview of the model architecture is shown as Fig. 2. Our neural model
consists of a recurrent neural network (notated as tRNN) and a convolutional
neural network (notated as dCNN). (The basic knowledge of networks is intro-
duced in Sect. 3.2). tRNN accepts tokens as inputs and outputs embeddings
of tokens. Correspondingly, dCNN accepts descriptions as inputs and outputs
embeddings of descriptions. To capture the semantic mapping relation between
tokens and descriptions, we use a score function to compute the similarity
between tRNN’s outputs and dCNN’s outputs. Then to train the model in
an unsupervised manner, we introduce noise-contrastive estimation [7] into our
model, which is widely used in natural language modeling [14] and proved to
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be fast and effective on model training [4,23]. Its basic idea is to train a logis-
tic regression classifier to discriminate between samples from the data distrib-
ution (i.e. positive samples) and samples from some “noise” distribution (i.e.
negative/noisy samples). In this paper, the positive sample is the correct token-
description pair and the noisy pair is a wrong description paired with a given
token. Then positive and negative samples share dCNN in our architecture.
Finally, the objective function of our model is to minimize the max-margin loss
J as Eq. 1.

J(θ) =
∑

(i,j)∈P

∑

k∈Si

max(0,Δ − score(vi, uj) + score(vi, uc)) (1)

In Eq. 1, vi is the learnt embedding for the token part. uj and uc are the learnt
embeddings for the correct and noisy descriptions respectively. P is the set of
all matched API token-description pairs (i, j) and S is the set of unmatched
descriptions for i th token.

3.2 Basic Knowledge of RNNs and CNNs

Recurrent neural networks (RNNs) are widely used to process sequential data
across a wide range of applications in speech recognition [5] and NLP [18]. For a
given sequence, RNNs do the same operation for every element in it, which means
“recurrent”. Usually, the basic RNNs [18] read one element at one time step, then
send both the output of the previous time step and the current element input
into the recurrent layer at the next step. The basic RNNs suffer from the gradient
vanish problem in training, which leads to the lost of long history information.
Then gated recurrent units, like LSTM [8] and GRU [3] cells, are proposed to
memorize longer dependencies. They use neural gates that could read or forget
information via internal memory states and have been successfully applied to
numbers of NLP tasks, such as machine translation [19] and answer selecting
[20].

Convolutional neural networks (CNNs) are firstly used in image classification
[12] and have been applied to NLP tasks successfully [4,10] in recent years. CNNs
contain two core operations: convolution and pooling. The convolution operation
uses a filter with a fixed window size to extract local features of the input data.
The pooling operation deals with the variant size of the input data and tailors
them into the same size with given functions like maximal or average. CNNs
usually process inputs with groups of convolutional layers and pooling layers,
then use a layer to flatten all the feature maps into one fixed-size embedding for
the supervised classification tasks.

3.3 tRNN

Here we first explain the reason for choosing the LSTM-based recurrent neural
network to learn embeddings for the token part. The token part keep a hier-
archical structure, which indicates different levels of concept abstraction. It is
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shown in the package prefix. Then after decomposing tokens of the CamelCase
format into words, there’s also a hierarchy among these componential words.
Since RNNs have been proved powerful on capturing sequential context [18] and
LSTM cells could memorize long sequential context better [8], we use a LSTM-
based recurrent neural network (tRNN) to capture tSeq’s hierarchical context
and learn the embedding of the token part.

Then we introduce the process of learning embeddings for tokens via tRNN.
As shown in Fig. 2(left), tRNN reads words in a direction from the general pack-
age prefix snippet to the specific word after CamelCase decomposition. Each
word of the tSeq is transferred to an embedding via a look-up matrix Wl, then
sent to a LSTM layer. When tRNN reads one word, it moves one time step.
At each time step, the LSTM layer accepts current word’s embedding and the
output of the previous time step, then sends its output to the next step. After
reading the last word, tRNN sends the output of the LSTM layer in the last
time step into a fully connected hidden layer, which outputs a d-dimensional
embedding for the token part.

3.4 dCNN

Here we also explain why we use a convolutional neural network to encode the
description part first. According to our observations and statistics on API doc-
uments of five API libraries (shown in Sect. 4.1), descriptions usually contain
a long sentence, even a small paragraph. Then we note that the core function
is usually related to several local phrases in the long descriptions. Since CNNs
are good at extracting local features across words without any syntactic pars-
ing operations, we apply CNNs to learn the semantics of the description into
embeddings.

The architecture of dCNN is shown in Fig. 2 (right). Words of the dSeq are
transferred to embeddings via a look-up matrix Wr first. Then we process the
sequence of word embeddings via two groups of 1D-convolutional layers and
max-pooling layers. Here we use the 1D-convolutional layer in [10] to extract
local features of phrases. It contains several convolution kernels. Each kernel
slides a window of m words on the entire word sequence and outputs a filtered
feature map of the input sequence. Then max-pooling layers are arranged after
the 1D-convolutional layer and used to remain maximal values of each dimension
based on the given window, so that the features of key phrase can be captured.
After that, a flatten layer is used to concat features of different feature maps into
one fixed-size embedding. Finally, dCNN sends the flatten layer’s output into a
fully connected hidden layer and gets the d-dimensional vector of the description
part.

3.5 Tree-Based Negative Sampling

In this section, we illustrate our negative sampling method. To train a model
via noise-contrastive estimation, negative samples are needed as the input. Since
API documents only provide positive pairs, which are matched token-description
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root

java javax org

java.awt

...java.awt.im java.awt.image java.awt.colorjava.awt.dnd

java.awt.im.spi java.awt.image.renderable

Fig. 3. A multiway tree constructed from package prefixes of Java SE 8

pairs, we need to extract negative samples by ourselves. For a given API token, we
expect to find appropriate noisy descriptions. If they were too hard to distinguish
on lexical information, it would take a long time for our model to converge
to the optimal point. If they were too easy via identifying just from the type
information, the robustness of our model would be weak.

Here we present a tree-based negative sampling method. We note that the
package prefixes in tokens hold hierarchical structures that indicate different
abstraction levels. Descriptions under the same package prefix share more com-
mon words than those under different package prefix. Then descriptions of API
tokens with different types, such as Class,Exception, Enum, are usually easier to
be distinguished from the sentence pattern that those with same types. So con-
struct a multiway tree based on all the package prefixes of the corpus to sample
noisy descriptions, like the one shown in Fig. 3. Each node presents a part of the
package prefix. A virtual root node is added to connect all the package prefixes
into a universal tree. Token-description mappings are saved under leaf nodes.
For tokens or descriptions under different leaf nodes, we assume that the more
common ancestor nodes they share, the more similar they are. So for a given
API token T , we trace from the leaf node L of its package prefix, and go up with
h depth. Then we find the find the ancestor A with h depth far from the leaf
node L. Now we collect descriptions saved under the leaf nodes of the ancestor
A except for the subtrees containing L. Then we filter descriptions holding the
same type of T as candidates. Finally, we sample k descriptions randomly from
the collected candidates as noisy descriptions for the given API token.

4 Evaluation

4.1 Datasets

In this paper, we use API reference documents of five Java API libraries as
datasets: Jave SE 8, Eclipse Platform 4.3, Spring 4.3, Lucene 6.1 and Java EE 7.
We download API documents from their official websites and use an HTML
parser to extract mappings of API tokens and descriptions in raw text.

Several pre-processing steps are done to transfer these raw text of mapping
into word sequences, so that they can be fed into the model in Sect. 3. First
we remove punctuations and numerical digits, then split the text into word
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sequences by whitespaces. Then we do CamelCase decomposition operations on
tokens of the CamelCase format, of which the reasons have been explained in
Sect. 3.1. We break tokens of the CamelCase format into words at the position of
the first capital letter followed by a lowercase letter or the position of the under-
line symbol. For example, “ICC ColorSpace” is transferred to a word sequence
of “ICC”, “Color” and “Space”. Finally, we do lowercase transformation and
stemming on all the words.

Table 2 shows the basic statistical information of the five datasets. We remove
the mappings of one-letter template classes and mappings of empty descriptions
from the datasets, of which the number is tagged by “Filtered”. Then we split
the data into the training, dev, test subsets with the ratio of 8:1:1. “AvgLength”
and “MaxLength” show the average and maximal length of the word sequences
– tSeq and dSeq. “VocabSize” gives the vocabulary size for words in the token
and description part.

Table 2. API documents for training and test

API library Java SE 8 Eclipse Platform 4.3 Spring 4.3 Lucene 6.1 Java EE 7

#Sample (filtered/original) 4252/4457 3883/4001 3821/3875 2659/2672 2038/2134

#Train/#Dev/#Test 3401/425/426 3106/388/389 3056/382/383 2127/266/266 1630/204/204

#AvgLength (TOKEN/DESC) 5/14 7/13 7/14 8/11 5/15

#MaxLength (TOKEN/DESC) 11/69 15/55 21/57 20/73 13/93

#VocabSize (TOKEN/DESC) 1268/2268 885/1683 959/3229 1025/1838 729/1341

4.2 Training

We pre-process our datasets with python and implement our model by Keras
1.0.3 with the backend of Theano 0.8.3. All the weights in our model, including
the word embeddings, are randomly initialized. The dimension is set to 256 for
embeddings of words, tokens and descriptions. The number of units in LSTM
layer is set to 256. The two 1D-convolution layers use convolutional kernels in
the number of 32 and 64 respectively. The size of the convolutional window is
set to 3 words for both convolutional layers. And the max-pooling window is set
to be 2 words. Two kinds of score functions are used to measure the similarity
of token-description pairs: cosine similarity and flipped Euclidean distance (i.e.
negative values of the original euclidean distance). We train the model with 100
epochs for each dataset.

4.3 Results of Description Selecting

Here we explore the quantitative metrics to evaluate the learnt API embeddings
of API tokens via our model. Since we expect to capture the mapping relations
of API tokens and descriptions after learning embeddings for the two part, we
propose a description selecting task.
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The description selecting task is defined as follows. For each API token in
the test set, we mix its original matched API description with k noisy descrip-
tions sampled in Sect. 3.5 as candidates. Using the tRNN’s output as embed-
dings of API tokens and the dCNN’s output as embeddings of the descriptions,
we compute the similarity score between the given API token and candidate
descriptions. Then we rank their matching scores and compute the accuracy by
identifying the correct description as the top one result.

We use Bag-of-Words (BoW) model as our baseline. BOW uses one-hot
embeddings for words in tokens and descriptions and takes the average embed-
dings of all words in a sequence as the embedding of the entire sequence.

Table 3. Accuracy (%) of description selecting task

API library Java SE 8 Eclipse Platform 4.3 Spring 4.3 Lucene 6.1 Java EE 7

Cos Score BoW 87.90 88.43 90.19 90.20 86.15

OurWork 93.45 93.35 91.71 91.43 87.69

EucScore BoW 72.54 72.25 78.10 62.44 72.30

OurWork 86.65 81.50 87.86 86.94 75.90

Table 3 shows the accuracy on five datasets. Here we mixed one cor-
rect description and three noisy descriptions as candidates. Our model runs
100-epoch training on each dataset. “Cos Score” means that the model is trained
with the score function of cosine similarity and “EucScore” with the flipped
Euclidean distance. Our work outperforms the baseline on both cosine score
and Euclidean score. Then we can infer that using cosine similarity gets better
results in all the datasets and more training samples lead to better results after
the same training epochs. Also, more training samples the model is trained with,
more improvement our model gets than the baseline.

We present results of several test cases in Table 4. The correct description is
marked with * and bold fonts. CaseA shows a correct selecting case by both BoW
and our work. Because the correct description share some keywords like “chan-
nel” and “write” with the given token, while other candidates do not. CaseB
gives a case that can be identified correctly by our work while Bow cannot. In
this case, there’s no shared keywords between the given token and all the candi-
dates. And our work could capture the semantics expressed by the token itself
and its description effectively. CaseC shows a case failed by BoW and our work.
Both models capture the semantics from keywords like “error”,“factory”, “con-
figuration”, but they both failed to identify the core semantics of the keyword
“transformer”.

All in all, the results of Tables 3 and 4 show that the learnt API embeddings
could identify the correct description with high accuracies and our model could
capture semantics of tokens and descriptions effectively.
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Table 4. Results of several test cases

CaseA: java.nio.channels.NonWritableChannelException

*Unchecked exception thrown when an attempt is made to write to a
channel that was not originally opened for writing

Checked exception thrown when an input character (or byte) sequence is valid but
cannot be mapped to an output byte (or character) sequence

Runtime exception thrown when a file system cannot be found

Checked exception thrown when an input byte sequence is not legal for given
charset, or an input character sequence is not a legal sixteen-bit Unicode sequence

CaseB: java.nio.charset.Charset

*A named mapping between sequences of sixteen-bit Unicode code units
and sequences of bytes

A multiplexor of SelectableChannel objects

A selectable channel for stream-oriented connecting sockets

A token representing the membership of an Internet Protocol (IP) multicast group

CaseC: javax.xml.transform.TransformerFactoryConfigurationError

Thrown when a problem with configuration with the Schema Factories exists

Thrown when a problem with configuration with the Parser Factories exists

An error class for reporting factory configuration errors

*Thrown when a problem with configuration with the Transformer
Factories exists

5 Conclusion

In this paper, we propose a neural model to learn embeddings of API tokens,
which is important for processing API dependent programs with deep learning.
Our model combines a recurrent neural network with a convolutional neural
network and integrates a tree-based negative sampling method in training. The
experimental results show that learnt embeddings of API tokens capture seman-
tics expressed by API documents effectively.
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